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I. INTRODUCTION AND SUMMARY

In ballistics work, and especially in small arms firings
at targets to determine accuracy, it is quite natural to
measure the closeness of a group of shots by the "extreme spread".
or the greatest distance between any two shots of a group.
Moreover, the extreme spread may be determined quickly with
a ruler and does not require any detailed or involved
computation, as does the round-to-round standard deviation
in each direction, or the mean radius of the shots of a
group, for example. It is for these reasons that ballisticians,
riflemen and others have long had a great interest in the
extreme spread, for it is truly the most rapid measure of
dispersion of shots on a target. Sometimes the extreme
spread, or the maximum distance between pairs of points on
the target, is called the "group diameter", but there is a
very subtle difference between the two when one delves into
the general problem on a statistical basis. We do not
intend to cover all the pertinent details relating to
the statistical analysis of patterns of shots on a target here,
but interested readers might well study the booklet of
Grubbs [1964). Rather, we intend to develop in this paper
the properties of the extreme spread more extensively than
has been done in the past, and thereby contribute to an
improved understanding of the statistical characteristics of
the probabil.ity distribution of the extreme spread, which is
required in any first-class or overall analysis of target
accuracy studies.

In our introduction of the subject, we point out that.
the extreme spread is a random variable which follows some
kind of statistical or probability distribution. Indeed, the
amount of random variation from one group of shots to
another depends markedly on the sample size, or the number
of shots in a group, and the underlying unknown, population
round-to-round standard deviation, which we will call
a. The population standard deviation, a, is a one-directional
or "linear" quantity, say for the x or horizontal direction
(as well as the y or vertical direction), and for a very
large number of shots it may be found as the square root of
the sum of squares of deviations in the x-direction from
the mean divided by the number of rounds. In rifle firing,
and in many other types of weapon studiis, the population
standard deviations in the two directions are equal or very
nearly so. Hence, it may be assumed in )ur followinganalysis that ax a cy 0 a. The exact theoretical probability

distribution of the extreme spread, or bivariate range, as
it is often called, has not been determined as of this date,
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although many of the key properties of the distribution are
fairly accurately known from previous studies. In the
following, we report on the results of a Monte Carlo type of
computer simulation, along with the necessary statisticalI analyses, to find approximate statistical distributions which
for all the practical purposes result in the degree of
accuracy needed to round out sufficiently our understanding I
of properties of the distribution of the extreme spread, at
least for the very important practical cases involving small
sample sizes of predominant interest.

Our acknowledgements must go to Mr. Philip G. Rust,
retired industrialist of the Winnstead Plantation,
Thomasville, Georgia, for his great interest in critical
analyses of accuracy firings of rifle,, which provided much
of the motivation for this hnvestigation, as well as for the
booklet by Grubbs [1964), which are of importance to ballistic
analyses generally.

II. SOME ANALYTICAL PRELIMINARIES

Consider a random sample X1 , *,*6 Xn (Xi = (xi, yi))

from a bivariate normal distribution with probability
density function (p.d.f.) given by

f(x, y- 1 e-(X2 +y2 )/2a 2 ,
f~.y) e-x( =xayza )l

The extreme spread (ES), or bivariate range, is defined as
ES a max IX.-X.1. This ES is of course a random variable,

as previously pointed out, and we seek its probability
distribution, realizing that it will be dependent upon the
sample size n. For the case n-2, for example, we have

ES - 1XI-X21 - /(xl-x 2 )2+(yl-y 2 )2 - 2xo, where the random

variate chi has two degrees of freedom. In this case, the
mean value of the extreme spread, E(ES) - 1.77245o, and the
variance V(ES) =(.9265o)2. This result does not have a
direct extension to higher sample sizes, (n>2) however, and
the distribution of the extreme spread ES has not been
determined analytically.

Some earlier work of Wilks and Grubbs in the last
reference [1964) have led to Monte Carlo estimates of the
first four moments of the three-dimensional or trivariate
range, the trivariate midrange, the extreme spread or
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bivariate range, and the bivariate midrange. Cacoullos and
DeCicco [1967) have investigated two approximations of the
ES distribution based on the Monte Carlo moment data of Wilks
and Grubbs. In this paper we present improved Monte Carlo
moment estimates (by virtue of greatly increased sample
size), as well as quantile estimqtes, or percentage points,
which were not available previously and propose some
approximate distributions, which will suffice for most
analytical studies in practice. The large-sample moments
tabulated below include the mean u, standard deviation a,
the skewness measure 03, and "kurtosis" or peakedness measure
0.4 (See any standard textbook on statistics for further
definitions and formulas.)

III. MONTE CARLO RESULTS

The moments (Table 1) and various quantiles of interest
(Table 2) are based upon 104 Monte Carlo samples of the
random variable ES for each value of sample size, n. The value
of n specifies the number of points sampled from the circular
normal distribution to determine a single value of ES.

The quantiles of Table 2 are, of course, subject to
standa'd Jefinitions and interpretations. For example, for a
samp' size of n - 7 and known population standard deviation
a, the l(iwer 1% point is 1.842a and therefore in random sampling
from a biva-iate normal population with standard deviation a
we would e. ,ect that only 1% of the extreme spreads for a
3ample of size seven would fall below 1.842a. Similarly, for
the 99% point, P. 9 9 0 0 0 (or upper 1% significance level) we
would expect only 1% of the extreme spreads for sample size n = 10
to exceed S.75a. The mean value of the extreme spread for a
sample of size 10 from Table 1 is 3.813c.
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IV. APPROXIMATE PROBABILITY DENSITIES

Candidates for approximating the probability
distribution of the extreme spread were chosen frort three
well known families of distributions, specifically, the
chi distribution, the lognormal distribution, and the two-
parameter Weibull distribution. Some particulars of our
findings are detailed in the following paragraphs.

Chi Distribution Approximation

In considering the Chi distribution, we made use of the

fact that 2mw2 /v is approximately distributed as x2 withn

=2m
2

v - - degrees of freedom (see, for example, Grubbs et al

[19663), where wn is the sample range for random samples of

size n from a univariate normal population. In our
notation, m - E(w2) and v = V(w2 ). We used this same typen n
of approximation for the extreme spread ES and interpolated
linearly to evaluate chi-square for fractional degrees of
freedom. Using the sample moments of ES to estimate m and
v, this family provided a rather good fit to the sample
quantiles over the entire range of n considered, although the
imension of the sample space has increased from one to two.

The results are summarized in Table 3 where the italicized
value is the fitted value juxtaposed to the Monte Carlo
quantile es*imate.

Lognormal Distribution Approximation

The lognormal distribution provides an excellent fit for
large values of n. Following recommendations of Aitchison
and Brown [1966), we used the method of quantiles (specific-
ally, the 10th and 90th percentilos) for purposes of estimating
u and a of the associated normal distribution. Possibly, a
different choice of quantiles might lead to a better fit for
small n; however, a summary of results for the larger values
of n is included as Table 4 with the same format as Table 3.

Weibull Distribution Approximation

In fitting a two parameter Weibull distribution,

F(x) u 1..e"(x/) , to our data, we were precluded from
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obtaining maximum likelihood estimates since i,'e have at
our disposal only the Monte Carlo moments of tie distribution
and not the individual sample values. In lieu of these, we
used a moment estimate suggested by Cohen [1965], but with
somewhat less than satitfying results. In fact, both the
chi approximation and t.lý lognormal seem preferable to the
two parameter Weibull, tithough a three parameter Weibull
with the introdichc;on ol' a location parameter would
prohably c'fer some improvement. We felt that this
excLeded our charter of consideration of a few commonly
encountered distributionz however, and postponed any
further inquiry for a later date, especially since the chi
and lognormal distributions gave "ery satisfactory results.

Data and r' p.!e of Fitting Procedure

Th., chi vamia: is less der:riptive in terns of absolute
difference betwe;'. i'ne Monte Carlo and fitted value as we
go further out in tae tails of the distribution and the
parameter n increases. As a matter i-f fact, the upper tail
(perhaps of most interest) is described somewhat better than
the lower tail, although the percentage error between the
Monte Carloed and fitted value rarely exceeds 4% and then
only in the extre•:e percentiles of the lower tail. It is
also worthy of note that for hypothesis testing the region
of rejection will be slightly larger than that itdicated for
the fitted X variate.

The lognormal variate as previously stated provides a
good fit for the larger values of n(15 < n < 34), with a
percentage error in excess of 2% occurriEng only in the most
extreme percentiles.

For practical situations either fit is adequate,
the chi fit being more versatile over the range of n
considered and the lognormal variate offering a closer
approximation over a restricted range of the sample size,
n.

Suppose we take a random sample x1 , ... , xn of size

n from an univariate normal distribution and determine the

sample range w max Ix.-x.I. Since -2m W2 is
n ijV 1  n

2m
2

approximately distributed as X2 (-=-1) where m, E(w2) and
v1
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v, V(w 2 ), we wanted to see if the extreme spread, ES, 4

which acts like a bivariate sample range did not also !
closely follow a chi distribution (or, equivalently, ES2

follow a x2 distribution).

To :-termine, for example, the 95th percentile P•: .95

Fo of ES 2 corresponding to some value of n we must satisfy
the relation

Pr{ES 2 < P 9 5  ^5 PTES <

or equivalently,

Pr( ES2 < Mp } .95
T -oV 95

To test our approximation, we assume

2m ES 2  2(2m2
•: V

where m and v are the mean and variance of ES2 , so that we
may substitute to obtain

Pr{x2(2M2 < p95
"v - v .95 "

and "nterpolate in the chi square table to determine L P 9 5 "v~~ yild 5 o

Finally, multiplication of this quantity by -yields P. 9 5 for

ES2 ,. and V is the 95% point for ES.
.95

It is easy to show that the mean, m, and variance v, for

the extreme spread squared, i. e. ES2 , may be expressed in
terms of the moments of the extreme spread ES as follows:

m 2 .2 + V 2

and v = 0404 + 4a3c3u + 4a2U2 -4

where the p, c, a3 and a4 are moments of ES.
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Hence, referring to Table 1 for n 10, we have

m = (0.745)2 + (3.813)2 = 15.094,

v = 3.288(0.7,,5)4 + 4(0.388)(0.74S)3(3.813)

+ 4(0.745)2(3.813)2 - (3.745)4 = 35.430,

and we want to determine P 9 5, where

Pr{x 2 (12.86) < 0.852 P 9 5 } = .95

Interpolating in the chi square table for 12.86 d, f. yields
0.852P = 22.20, or P 9 5 = 26.06 for ES2 , and VP /9 = 5.11

95 95.95

which is the 95% point for ES, corresponding to the entry
in Table 2.

Example. Compare the relative precision of the extreme
spread ES and radial standard deviation RSD for 1S rounds.

For n=1S rounds and from Table 1, = ES/4.190 gives an

unbiased estimate of a, and quantity .694/4.190 = .166
is the relative precision for the extreme spread. In a
like manner, the precision of the RSD is found from Grubbs
(1964) Table 4 for 15 rounds to be .1817/1.354 = .134.
Therefore .166 vs. 134 indicates that the RSD is slightly
more precise than the ES. (For the relative precision, we
compare standard errors for unbiased estimates.)

To use Table 2, suppose from previous firings we established
that a = 3 inches. Then for n=15 rounds, the chance that
the extreme spread, ES, exceeds 5.396a = (5.396)(3) = 16.19 inches
is .0S.
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MOMENT CONSTANTS OF THE EXTREME SPREAD
"TABLE 1

n ES OES 03 (

2 1.766 0.932 0.632 3.294

3 2.406 0.887 0.451 3.143

4 2.767 0.856 0.393 3.163
5 3.066 0.828 0.390 3.171

6 3.277 0.806 0.374 3.194

7 3.443 0.783 0.373 3.177

8 3.582 0.771 0.392 3.231

9 3.710 0.754 0.382 3.215

10 3.813 0.745 0.388 3.288

iS 4.190 0.694 0.395 3.255

20 4.452 0.668 0.400 3.240

25 4.639 0.650 0.439 3.307

28 4.734 0.642 0.426 3.357

30 4.788 0.635 0.463 3.441

31 4.822 0.631 0.434 3.321

34 4.891 0.623 0.422 3.318

Note: The numbers in the second column are E(ES)/o, and those

of the third column are SD(ES)/v.
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PERCENTAGE POINTS OF THE EXTREME SPREAD

TABLE 2

.P0005 P.0010 P.O050 P.0100 P.0250 P.0500 P.1000

3 0.339 0.383 0.578 0.687 0.882 1.066 1.313

4 0.653 0.710 0.946 1.076 1.283 1.477 1.725

5 0.885 0.983 1.260 1.400 1.611 1.801 2.046

6 1.137 1.227 1.491 1.636 1.853 2.043 2.278

7 1.348 1.452 1.710 1.842 2.043 2.243 2.477

8 1.525 1.608 1.863 1.998 2.208 2.403 2.636

9 1.607 1.709 2.030 2.167 2.373 2.563 2.786

10 1.798 1.884 2.140 2.277 2.482 2.669 2.896

15 2.295 2.372 2.656 2.772 2.963 3.129 3.340

20 2.630 2.721 2.972 3.095 3.276 3.438 3.626
25 2.894 2.965 3.220 3.329 3.504 3.652 3.845

28 2.952 3.044 3.312 3.424 3.605 3.759 3.953

30 3.084 3.170 3.402 3.511 3.678 3.834 4.017

31 3.149 3.216 3.429 3.541 3.712 3.868 4.055

34 3.216 3.297 3.517 3.630 3,797 3.946 4.127
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M-4

TABLE 2(CONTINUED)

n P.9000 P.9500 P.9750 P. 9 9 0 0 P.9950 P.9990 P.9995

3 3.588 3.984 4.318 4.746 5.002 5.595 5.834

4 3.916 4.285 4.602 5.010 5.290 5.938 6.190

5 4.156 4.519 4.832 5.207 5.461 6.057 6.288
6 4.336 4.670 4.973 5.361 5.655 6.221 6.431

7 4.480 4.805 5.110 5.471 5.728 6.245 6.427

8 4.595 4.937 5.227 5.582 5.848 6.379 6.621

- 9 4.702 5.029 5.308 5.672 5.930 6.398 6.658

410 4.786 5.118 5.409 5.750 6.004 6.552 6.742

15 5.101 5.396 5.668 6.000 6.235 6.727 6.897

20 5.336 5.630 5.880 6.205 6.436 6.890 6.998

25 5.494 5.790 6.049 6.364 6.578 7.012 7.198

28 5.575 5.860 6.113 6.453 6.664 7.138 7.323

30 5.619 5.898 6.170 6.476 6.711 7.205 7.386

31 5.651 5.927 6.180 6.503 6.719 7.146 7.317

34 5.706 5.979 6.224 6.523 6.731 7.218 7.389

14
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CHI APPROXIMATION

TABLE 3

n P. 0 0 5 0  P.0 1 0 0  P.025 0  P. 0 5 0 0  .1000

3 0.578 0.687 0.882 1.066 1.313
0.562 0.676 0.868 1.057 Z.297

4 0.946 1.076 1.283 1.477 1.725
0.905 Z.038 1.254 ?.158 1.707

5 1.260 1.400 1.611 1.UI 2.046
Z.182 1.325 1.550 1.758 2.011

6 1.491 1.636 1.853 2.043 2.278
Z.4ZO Z.560 Z.787 Z.995 2.249

7 1.710 1.842 2.043 2.243 2.477
7.608 Z.756 1.984 2.19z 2.442

8 1. 3 1.998 2.208 2.403 2.636
Z.755 1.904 2.Z36 2.34Z 2.592

9 2.030 2.167 2.373 2.563 2.786
Z.980 2.060 2.288 2.495 2.740

10 2.140 2.277 2.482 2.669 2.896
2.027 2.Z76 2.404 2.609 2.853

15 2.656 2.772 2.963 3.129 3.340
2.496 2.642 2.864 3.06Z 3.299

20 2.972 3.095 3.276 3.438 3.626
2.808 2.953 3.Z73 3.359 3.584

25 3.220 3.329 3.504 3.652 3.845
3.027 3.Z7Z 3.383 3.572 3.800

28 3.312 3.424 3.605 3.759 3.953
3.Z44 3.284 3.493 3.686 3.903

30 3.402 3.511 3.678 3.834 4.017
3.209 3.35Z 3.560 3.746 3.96Z

31 3.429 3.541 3.712 3.868 4.055
3.256 3.398 3.604 3.785 4.003

34 3.517 3.630 3.797 3.946 4.127
3.342 3.485 3.688 3.8?7 4.085
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CHI APPROXIMATION

TABLE 3 (CONTINUED)

P.9000 .9500 .9750 .9900 .9950 P.9990

3 3.588 3.984 4.318 4.746 5.002 5.595

3.593 3.975 4.306 4.717 4.997 5.578

4 3.916 4.285 4.602 5.010 5.290 5.938
I 3.923 4.289 4.597 4.98Z 5.233 5.786

5 4.156 4.519 4.832 5.207 5.461 6.057
4.Z64 4.5Z6 4.8Z3 5.477 5.424 5.93S

!6 4.336 4.670 4.973 5.361 5.655 6.221
i4.352 4.677 4.966 5.3Z8 .5.5.59 6.0.52

17 4.786 4.80S 5.110 5.471 .0728 6.24S
4.483 4.799 5.083 5.467 5.647 6.42?

8 4.59. 4.937 9.227 5.682 6.848 66.79
4. 608 4.982Z 5.1796 5.521 5. 752 6. 222

9 4.702 5.029 5.308 5.672 S.930 6.398
4.3704 6 5.602 5.280 6.299 5.820 6.827

10 4.786 5.118 5.8409 6.75 6.2004 6.682
4.4794 5.70 6.09 6.3640 6.789 6.041

is 5.101 5.396 5.668 6.000 6.423 6.727
5.507 5.86 611 6.4Z5 6.645 6.524

20 5.336 5.630 6.880 6.20S 6.497 6.890
305.619 5.598 6.873 6.705 6.711 6.288

25 5.494 5.790 6.049 6.364 6.578 7.012
.5. 499 .5. ?58 .5. 980 6. 246 6. 429 6. 809

23 5.657 5.860 6.113 6.453 6.664 7.138
5.5.82 5.8,35 6. 056 6.3Z7, 6. 497 6.87.5

30 5. 619 5. 898 6. 170 6. 476 6. 711 7. 20S
.5.6286 5.877 6.Z,00 6..359 6..533. 6.906

31 5.651 S.927 6.180 6.503 6.719 7.146

5.654 5.902 6.Z22 6.378 6.553 6.920

34 5.706 5.979 6.224 6.523 6.731 7.218
5.715 5.959 6.Z73 6.424 6.598 6.958
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LOG NORMAL APPROXIMATION

TABLE 4

" .P0005 P.0010 .O050 P.O10O0 P0250 P.0500 P1000o

15 2.295 2.372 2.656 2.772 2.963 3.129 3.340
2.397 2.478 2.69? 2.8z1 2.986 3.Z46 3.340

20 2.630 2.721 2.972 3.095 3.276 3.438 3.626
2.679 2.?76 2.984 3.098 3.2?4 3.433 3.626

25 2.894 2.965 3.220 3.329 3.504 3.652 3.845
2.907 2.989 3.21, 3.325 3.499 3.655 3.845

28 2.952 3.044 3.312 3.424 3.605 3.759 3.953I 3.020 3.Z02 3.323 3.436 3.609 3.765 3.953

30 3.084 3.170 3.402 3.511 3.678 3.834 4.017
3.088 3.?70 3.39Z 3.504 3.676 3.830 4.017

31 3.149 3.216 3.429 3.541 3.712 3.868 4.055
3.127 3.209 3.43C 3.542 3.714 3.869 4.05b

34 3.216 3.297 3.517 3.630 3.797 3.946 4.127
3.202 3.284 3.504 3.61?7 3.788 3.942 4.Z27

17II
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LOG NORMAL APPROXIMATION

TABLE 4 (CONTINUED)

15 5.101 5.396 5.668 6.000 6.235 6.727 6.897
5.t01 5.4t6 5.706 6.06a 6.317 6.877 7.108

20 5.336 5.630 5.880 6.205 6.436 6.890 6.998
5.336 5.656 5.910 6.246 6.485 7.008 7.a22

25 S.494. 5.790 6.049 6.364 6.578 7.012 7.198
5.494 5.779 6.038 6.354 6.578 7.067 7.266

28 5.575 5.860 6.113 6.453 6.664 7.138 7.323
5.575 5.853 6.106 6.413 6.632 7.105 7.298

30 5.619 5.898 6.170 6.476 6.711 7.205 7.386
5.619 5.893 6.t4l 6.442 6.656 7.2a0 ?.30f,

31 5.651 5.927 6.180 6.503 6.719 7.146 7.317
5.651 5.923 6.170 6.469 6.682 7.142 ?.329

34 5.706 5.979 6.224 6.523 6.731 7.218 7.389
5.706 5.974 6.2a7 6.5Z1 6.720 7.I71 7.355
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